A New Proof of Pick ' s Theorem *
نویسنده
چکیده
f3 real. (See, for instance, [1], p. 224, ex. 4.) We offer the following proof whic h, although it also uses Bieberbach's result, is considerably different. PROOF: Let cP (z) J~ . Then cP sends the open unit disk into itself. Let cP 1= cP and inductively 1 a? define cPn=cP OcPlI t. If cPll(Z)=An,1 z+AIl,z Z2+ . .. ,it is clear that A"'=M' A I ,2= M' AII ,I = A", AIl I,t, and A II ,2 = AI ,I A nI,2 + A I,2 A;' _1.1' It follows that An,1 = A;'., and A II ,2 =A I ,zA :' ,-; 1 (l +A 1 , 1 +ALI + . . +A :',-;1). Now cPli/A 11 , 1 E!F for each n, so Bieberbach's theorem implies that IA" ,2/A" ,11 :s;: 2, or
منابع مشابه
A new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملCommon xed point theorem for w-distance with new integral type contraction
Boujari [5] proved a fixed point theorem with an old version of the integraltype contraction , his proof is incorrect. In this paper, a new generalizationof integral type contraction is introduced. Moreover, a fixed point theorem isobtained.
متن کاملAnother proof of Banaschewski's surjection theorem
We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...
متن کاملThe Basic Theorem and its Consequences
Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...
متن کاملDiagonal arguments and fixed points
A universal schema for diagonalization was popularized by N.S. Yanofsky (2003), based on a pioneering work of F.W. Lawvere (1969), in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function. It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema. Here, we fi...
متن کاملFrobenius kernel and Wedderburn's little theorem
We give a new proof of the well known Wedderburn's little theorem (1905) that a finite division ring is commutative. We apply the concept of Frobenius kernel in Frobenius representation theorem in finite group theory to build a proof.
متن کامل